Biotransformation of 3α , 4α -Dihydroxy-dihydro- β -agarofuran by *Rhizopus nigricans*

Julio Alarcón* and Sergio Águila

Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad del Bío-Bío, Chillán Chile. Fax: +56-42-203046. E-mail: jalarcon@pehuen.chillan.ubiobio.cl

- * Author for correspondence and reprint requests
- Z. Naturforsch. 59 c, 215-217 (2004); received July 14/August 20, 2003

 $3\alpha,4\alpha$ -Dihydroxy-dihydro- β -agarofuran (1), prepared from (+)-dihydrocarvone by a traditional synthetic method, the Robinson annelation, was biotransformed by *R. nigricans* to afford a new metabolite characterized as $1\alpha,3\alpha,4\alpha$ -trihydroxy-dihydro- β -agarofuran (2) by spectroscopic method. An acetylated derivative was prepared.

Key words: Celastraceae, Sesquiterpenes, Agarofuran Synthesis

Introduction

From plants of the Celastraceae family a variety of compounds has been isolated such as: maytansinoids, triterpenes, diterpenes and sesquiterpenes. These compounds are thought to be responsible for the biological activity attributed to these plants (Tu, 1991; Brüning and Wagner, 1978). The Celastraceae sesquiterpenoids generally occur as polyesters of variously poly-oxygenated tricyclic scaffolds all based on a core C₁₅ skeleton known as dihydroagarofuran. This kind of compounds exhibits a wide spectrum of biological properties, including significant cytotoxic, immunosuppressive, anticancer, insecticidal, insect antifeedant and potent anti-HIV activity (Zhou *et al.*, 2001; Cespedes *et al.*, 2001).

Their highly oxygenated tricyclic frameworks, comprising a number of contiguous stereocenters, pose a formidable synthetic challenge and have attracted immense interest from synthetic chemists. Several total synthesis of agarofurans have been reported since 1970 (Boyer *et al.*, 2003; White *et al.*, 1995, 1997; Kelly, 1972; Tu and Sun, 1998; Alarcón *et al.*, 1998a).

The objective of our work is to obtain agarofuran sesquiterpenoic polyol combining synthetic strategies with microbiological hydroxylation, for which we previously prepared a compound 1 by means of Robinson annelation. Then the compound was hydroxylated with *R. nigricans*. The use of fungi for hydroxylations of terpenoid substrates is amply documented in the literature (Chaney and Hertzog, 1967; Lamare and Furstoss, 1990).

Material and Methods

Synthesis of $3\alpha,4\alpha$ -dihydroxy-dihydro- β -agarofuran (1)

Compound **1** was prepared from dihydrocarvone by means of reaction of Robinson annelation with ethyl vinyl ketone according to Alarcón *et al.* (1998b) (Fig. 1). The structure of compound **1** was determined by NMR spectroscopy. 1 H NMR (300 MHz, CDCl₃, δ in ppm) δ = 3.61–3.56 (dd, 1H, J = 5.07, 10.14 Hz), 1.32 (s, 3H), 1.28 (s, 3H), 1.23 (s, 3H), 1.15 (s, 3H). – 13 C NMR (65 MHz, CDCl₃, δ in ppm): δ = 88.50, 82.44, 76.29, 73.53, 43.68, 38.33, 37.55, 35.41, 32.40, 30.05, 26.59, 24.35, 23.79, 22.79, 21.56, 21.12. – MS (70 eV): m/z (rel. int.) = 254 (30), 239 (100), 221 (36), 203 (11), 193 (18), 177 (52), 154 (13), 125 (20), 123 (21), 109 (22), 81 (12), 69 (18), 55 (19).

Fermentation conditions

R. nigricans (LSPN001, 'authors' laboratory) was grown in shaked culture medium comprising (g per liter): CaCl₂ (0.05), KH₂PO₄ (0.025), (NH₄)₂HPO₄ (0.25), MgSO₄ × 7H₂O (0.15), 1.3 ml of FeCl₃ (1%), malt extract (3.0) and glucose (10.0). The culture was grown in 250 ml conical flasks each containing 100 ml medium for 36 h at 25 °C prior to the addition of the substrate.

Incubation of 3α , 4α -dihydroxy-dihydro- β -agarofuran with R. nigricans

 $3\alpha,4\alpha$ -dihydroxy-dihydro- β -agarofuran (1) (0.5 g) in ethanol (5 ml) was evenly distributed in 10 flasks of *R. nigricans* and the fermentation was

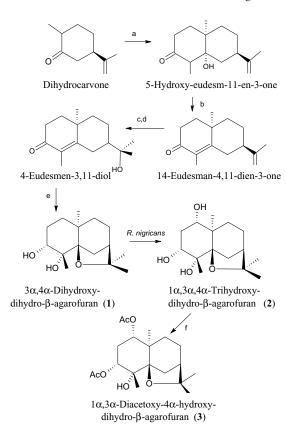


Fig. 1. Synthesis of 3α,4α-dihydroxy-dihydro-β-agarofuran (1) and biotransformation with *R. nigricans*. a) EVK, KOH, 0 °C. b) KOH, EtOH, reflux, 1 h. c) *m*-CPBA, CHCl₃, room temperature. d) LiAlH₄, Et₂O. e) *m*-CPBA, toluene. f) Ac₂O, Pyridine.

subsequently continued for 5 d. The myceliun was filtrated and the broth successively extracted with ethyl acetate. The solvent was evaporated to give a dry residue which was chromatographed on silica gel. Elution with 10% ethyl acetate/light petroleum ether (40-60 °C) gave the starting material (0.11 g) identified by its ¹H NMR spectrum. Further elution with 20% ethyl acetate/light petroleum ether gave $1\alpha,3\alpha,4\alpha$ -trihydroxy-dihydro- β agarofuran (2) (0.31 g, yield 62%; Fig. 1). ¹H NMR (300 MHz, CDCl₃, δ in ppm): $\delta = 4.15$ (t, J = 4.9Hz), 3.60-3.51 (m), 1.32 (s, 3H), 1.25 (s, 3H), 1.19 (s, 3H), 1.09 (s, 3H). – ¹³C NMR (65 MHz, CDCl₃, δ in ppm): $\delta = 87.88, 82.51, 72.38, 70.34, 70.05,$ 42.24, 33.98, 31.66, 29.44, 29.26, 26.98, 24.68, 22.42, 21.47, 20.15. – MS (70 eV): m/z (rel. int.) = 270 (1), 252 (32), 234 (7), 219 (9), 191 (9), 177 (8), 153 (100), 125 (25), 91 (23).

Acetylation of 2

Pyridine (0.1 ml) was added to a solution of compound **2** (10 mg) in Ac_2O (0.5 ml), and the solution was stirred for 7 h at room temperature (25 °C). The product was isolated in the usual manner and separated by silica gel CC by a hexane/EtOAc gradient. The diacetate **3** was obtained. ¹H NMR (300 MHz, CDCl₃, δ in ppm): δ = 4.18 (t, J = 4.7 Hz), 3.62 (dd, J = 5.01, 10.2 Hz), 2.10 (s, 3H), 2.05 (s, 3H), 1.32 (s, 3H), 1.28 (s, 3H), 1.23 (s, 3H), 1.17 (s, 3H). – ¹³C NMR (65 MHz, CDCl₃, δ in ppm): δ = 171.43, 170.71, 87.88, 82.86, 70.37, 68.96, 63.46, 42.15, 34.03, 31.76, 29.54, 29.17, 28.96, 27.05, 24.73, 22.54, 21.20, 20.85. – MS (70 eV) m/z (rel. int.) 354 (1), 339 (14), 313 (4), 294 (15), 219 (36), 173 (48), 133 (100), 69 (65).

Results and Discussion

In a typical aerobic fermentation, compound 1 was incubated with *Rhizopus nigricans* for 5 d. Extraction of the reaction mixture followed by chromatography gave 22% of unconverted 1, 62% of metabolite 2 (yield calculated from the amount of 1 converted) and a mixture of other, not yet identified hydroxylation products (ca. 16%).

The major metabolite was $1\alpha,3\alpha,4\alpha$ -trihydroxy-dihydro- β -agarofuran (2). The 1H NMR spectrum showed singlets at δ 1.32, 1.25, 1.19 and 1.09 ppm, corresponding to the four methyl groups. The protons at C-1 and C-3 appeared at δ 4.15 and δ 3.60–3.51, respectively. The 13 C NMR spectrum confirmed a CH(OH) resonance at δ 72.38, 70.34, 70.05 ppm which was confirmed by DEPT and HETCOR measurements. The C-1 position of the newly introduced hydroxyl was established due to the HMBC correlation of H-1 (δ 4.15) with C-10 (33.98). MS of metabolite 2 showed a molecular ion peak at m/z 270 due to the introduction of an oxygen atom.

In conclusion, we have shown that the microbiological hydroxylation of 3α , 4α -dihydroxy-dihydro- β -agarofuran (1) gave 1α , 3α , 4α -trihydroxy-dihydro- β -agarofuran (2) in a higher yield than by chemical synthesis. This procedure may be a convenient new route to the synthesis of polyhydroxyagarofurans.

Acknowledgements

This work was supported by grants from DIUBB N° 012607-2, Universidad del Bío-Bío, Chillán, Chile.

- Alarcón J., Becerra J., and Silva M. (1998a), Further information on the chemistry of chilean Celastraceae. J. Chil. Chem. Soc. **43**, 65–71.
- Alarcón J., Alderete J., Peter M. G., Becerra J., and Silva M. (1998b), Study on synthesis of $3\alpha,4\alpha$ -dihydroxy-dihydro- β -agarofuran. J. Chil. Chem. Soc. **43**, 325–327
- Boyer F. D., Prangé T., and Ducrot P. H. (2003), Synthesis of agarofuran antifeedants. Part 6: Enantioselective synthesis of a key decalinic intermediate. Tetrahedron: Asymmetry 14, 1153–1159.
- Brüning R. and Wagner H. (1978), Übersicht über die Celastraceen-Inhaltsstoffe: Chemie, Chemotaxonomie, Biosynthese, Pharmakologie. Phytochemistry 17, 1821.
- Cespedes C., Alarcón J., Aranda E., Becerra J., and Silva M. (2001), Insect growth regulator and insecticidal activity of β-dihydroagarofurans from *Maytenus* spp. (Celastraceae). Z. Naturforsch. **56c**, 603–613.
- Chaney W. and Hertzog H. L. (1967), Microbial Transformations of Steroids. Academic Press, New York, pp. 415–432.
- Kelly R. (1972), The synthesis of norketoagarofuran. J. Org. Chem. 37, 3393–3397 (and references cited therein).

- Lamare V. and Furstoss R. (1990), Bioconversion of sesquiterpenes. Tetrahedron **46**, 4109–4132.
- Tu Y. Q. (1991), Structure of two new sesquiterpenoid insect antifeedants from *Celastrus rhosthornianus*. J. Chem. Soc. Perkins Trans. I, 425–427.
- Tu Y. Q. and Sun L. D. (1998), A general synthetic route of dihydroagarofuran sesquiterpenoid from α -(-)-santonin. Tetrahedron Lett. **39**, 7935–7938.
- White J. D., Cutshall N. S., Kim T. S., and Shin H. J. (1995), Total synthesis of eunyminol, the sesquiter-penoid nucleus of cathedulin K-19, *via* an epoxide cascade cyclization. J. Am. Chem. Soc. **117**, 9780–9781.
- White J. D., Shin H., Kim T. S., and Cutshall N. S. (1997), Total synthesis of the sesquiterpenoid polyols eunyminol and 3,4-dideoxymaytol, core constituents of esters of the Celastraceae. J. Am. Chem. Soc. **119**, 2404–2419.
- Zhou G., Gao X., Li W., and Li Y. (2001), An enantioselective synthetic strategy toward the polyhydroxylated agarofuran. Tetrahedron Lett. **42**, 3101–3103 (and references cited therein).